Heteromeric acid-sensing ion channels (ASICs) composed of ASIC2b and ASIC1a display novel channel properties and contribute to acidosis-induced neuronal death.
نویسندگان
چکیده
Acid-sensing ion channel (ASIC) subunits associate to form homomeric or heteromeric proton-gated ion channels in neurons throughout the nervous system. The ASIC1a subunit plays an important role in establishing the kinetics of proton-gated currents in the CNS, and activation of ASIC1a homomeric channels induces neuronal death after local acidosis that accompanies cerebral ischemia. The ASIC2b subunit is expressed in the brain in a pattern that overlaps ASIC1a, yet the contribution of ASIC2b has remained elusive. We find that coexpression of ASIC2b with ASIC1a in Xenopus oocytes results in novel proton-gated currents with properties distinct from ASIC1a homomeric channels. In particular, ASIC2b/1a heteromeric channels are inhibited by the nonselective potassium channel blockers tetraethylammonium and barium. In addition, steady-state desensitization is induced at more basic pH values, and Big Dynorphin sensitivity is enhanced in these unique heteromeric channels. Cultured hippocampal neurons show proton-gated currents consistent with ASIC2b contribution, and these currents are lacking in neurons from mice with an ACCN1 (ASIC2) gene disruption. Finally, we find that these ASIC2b/1a heteromeric channels contribute to acidosis-induced neuronal death. Together, our results show that ASIC2b confers unique properties to heteromeric channels in central neurons. Furthermore, these data indicate that ASIC2, like ASIC1, plays a role in acidosis-induced neuronal death and implicate the ASIC2b/1a subtype as a novel pharmacological target to prevent neuronal injury after stroke.
منابع مشابه
Acid sensing ion channels in dorsal spinal cord neurons.
Acid-sensing ion channels (ASICs) are broadly expressed in the CNS, including the spinal cord. However, very little is known about the properties of ASICs in spinal cord neurons compared with brain. We show here that ASIC1a and ASIC2a are the most abundant ASICs in mouse adult spinal cord and are coexpressed by most neurons throughout all the laminas. ASIC currents in cultured embryonic day 14 ...
متن کاملRegional and subunit-specific downregulation of acid-sensing ion channels in the pilocarpine model of epilepsy.
Acid-sensing ion channels (ASICs) constitute a recently discovered family of excitatory cation channels, structurally related to the superfamily of degenerin/epithelial sodium channels. ASIC1b and ASIC3 are highly expressed in primary sensory neurons and are thought to play a role in pain transmission related to acidosis. ASIC1a, ASIC2a, and ASIC2b are also distributed in the central nervous sy...
متن کاملCoupling between NMDA Receptor and Acid-Sensing Ion Channel Contributes to Ischemic Neuronal Death
Acid-sensing ion channels (ASICs) composed of ASIC1a subunit exhibit a high Ca(2+) permeability and play important roles in synaptic plasticity and acid-induced cell death. Here, we show that ischemia enhances ASIC currents through the phosphorylation at Ser478 and Ser479 of ASIC1a, leading to exacerbated ischemic cell death. The phosphorylation is catalyzed by Ca(2+)/calmodulin-dependent prote...
متن کاملAcid-sensing ion channel (ASIC) 4 predominantly localizes to an early endosome-related organelle upon heterologous expression
Acid-sensing ion channels (ASICs) are voltage-independent proton-gated amiloride sensitive sodium channels, belonging to the DEG/ENaC gene family. Six different ASICs have been identified (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, ASIC4) that are activated by a drop in extracellular pH, either as homo- or heteromers. An exception is ASIC4, which is not activated by protons as a homomer and which d...
متن کاملExpression and Activity of Acid-Sensing Ion Channels in the Mouse Anterior Pituitary
Acid sensing ion channels (ASICs) are proton-gated cation channels that are expressed in the nervous system and play an important role in fear learning and memory. The function of ASICs in the pituitary, an endocrine gland that contributes to emotions, is unknown. We sought to investigate which ASIC subunits were present in the pituitary and found mRNA expression for all ASIC isoforms, includin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 26 شماره
صفحات -
تاریخ انتشار 2011